
Goal-Based Operations of an Antenna Array for Deep Space Communication

Joshua S. Choi, Adam J. Coleman

Bach X. Bui, Daniel L. Dvorak, Joseph O. Hutcherson,

Michel D. Ingham, Cin-Young Lee, Paul A. Wolgast

Systems & Software Division

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA, USA

{Joshua.S.Choi, Adam.J.Coleman,

Bach.X.Bui, Daniel.L.Dvorak. Joseph.O.Hutcherson,

Michel.D.Ingham, Cin-Young.Lee, Paul.A.Wolgast}@jpl.nasa.gov

Abstract

NASA is currently evaluating the benefits of

transitioning to a highly reconfigurable network of

arrayed dish antennas to support an increasing

number of deep space missions. The next-generation

Deep Space Network (NG-DSN), as currently

conceptualized, would require extensive automation to

reduce operations cost and handle the increased

complexity associated with monitoring and controlling

the larger number of antennas. This paper presents a

prototype operations architecture for the proposed

NG-DSN that is fundamentally based on three

concepts: physical state variables of the system to be

controlled, expressions of operational intent for those

state variables (“goals”), and models describing the

behavior of these state variables and their interactions.

These concepts shape the software design of an

automated control system, the model-based systems

engineering analysis that feeds this design, and the

human operator interface to the control system. This

control system provides for automation of capabilities

such as resource allocation and fault recovery (both

localized and system-wide). This paper describes the

development and demonstration of the control system

on prototype antenna array hardware at the Jet

Propulsion Laboratory.

1. Introduction

Onboard control systems on spacecraft and control

systems of the ground communication infrastructure

that support the spacecraft are both becoming more

and more complex. These increasingly complex

systems demand the development of increasingly

complex control software, and as such automation,

coordination, robustness, and scalability become

crucial features. System engineers responsible for such

control systems therefore design them so that the intent

of the users is made explicit during operations. This

enables the system to make more “educated” decisions

on how and when to execute individual tasks that

satisfy both the operator’s goals as well as the system

constraints. Such systems present information to the

operator at a higher level of abstraction, so that

minimal human intervention is required. This

ultimately results in cost savings.

This paper discusses one such control software

system that has been designed and developed by a

research and technology development team at the Jet

Propulsion Laboratory (JPL). The purpose of this

prototype system is to monitor and control a large

array of deep space communication antennas—

potentially such as that of the proposed next-

generation Deep Space Network (NG-DSN) (discussed

in Section 2)—and as such support simultaneous

tracking of multiple spacecraft. A distinguishing

characteristic of this prototype system, which we refer

to as Array Monitor and Control Prototype (AMCP) in

this paper, is that its operation is entirely goal-based—

the system behaves autonomously to satisfy the

original intent of the operator.

We applied a model-based system engineering

methodology called State Analysis (SA) [1] (Section 3)

throughout three phases of this software system’s life

cycle: system engineering (Section 4), state-based

software design shaped by the products from system

engineering (Section 5), and system operations. For the

operations aspect, we dedicate a section on how we

engineered our system to support goal-based

operations (Section 6) and how the user interface was

designed to complement it (Section 7). We conclude

by presenting our results from the operations

demonstrations (Section 8.1 on simulated

demonstration and 8.2 on demonstration using real

hardware), followed by our final thoughts on the

results achieved from this project.

Prior to our main discussion, however, we first

present some background on the application domain

and our motivation for developing the AMCP.

2. Antenna Arrays in NASA’s Deep Space

Network

The DSN is “an international network of antennas

that supports interplanetary spacecraft missions.”[2]

Dozens of missions today rely solely on the DSN to

establish communication links between spacecraft and

ground mission control, and each of these links are

established at DSN complexes situated around the

globe. The problem lies in the fact that each DSN

complex is comprised of only a few antennas that have

large apertures, and the functional loss of a single

antenna can have significant, undesirable impact on the

multiple missions scheduled to use it. Each antenna

represents a single point of failure for these missions.

NASA is currently evaluating a modernization

strategy to address risks such as the one stated above.

A potential part of this strategy is the deployment of

large arrays of small antennas to replace the deep space

communication capabilities of the aging, large aperture

antennas. (For the purposes of this paper, we use the

term NG-DSN, as mentioned previously, to refer to

this proposed antenna array infrastructure.) It is

possible to achieve the equal effective aperture of a

single, large antenna by combining the signals from a

precisely coordinated array of smaller antennas

(leveraging the principle of “interferometry”) [3]. The

current NG-DSN concept is to deploy as many as

hundreds of antennas per DSN complex [4]. In

addition to the antennas, it is expected that a

significant number of heterogeneous DSN subsystems

will exist at each complex to support spacecraft

communication. Given these attributes—the sheer

number of antennas and the variety of subsystems that

behave differently—monitoring and controlling of the

NG-DSN system would present a difficult challenge.

This monitor and control problem is made even more

difficult because antenna arrays need to be tightly

synchronized and seamlessly coordinated if they are to

properly achieve the effective apertures of larger

antennas.

Our AMCP software aims to address this

complexity issue. By taking a goal-based operations

approach, the system adapts and scales regardless of

the number of antennas to be used, the number of

simultaneous spacecraft to be supported, or the number

of different subsystems to be controlled. Because the

system makes control decisions to satisfy the

operator’s goals, it can also autonomously allocate

resources and resolve system anomalies.

In the next section, we present the model-based

systems engineering methodology that was applied to

the development of AMCP.

3. State Analysis Approach to System

Engineering

A novel model-based systems engineering

methodology, called State Analysis (SA) [1], has been

developed to complement the traditional functional

decomposition approach and better address the

complexity challenge described previously. It provides

a methodical and rigorous approach for:

• Modeling physical behavior in terms of system

state variables and the relationships between them

(state-based behavioral modeling);

• Capturing mission objectives in detailed scenarios

motivated by operator intent (goal-directed

operations engineering); and

• Describing the methods by which objectives are

achieved (state-based software engineering).

The following three sections of the paper describe

in more detail the application of each of these facets to

the development of AMCP. For detailed information

on SA refer to references [1,5,6].

4. Modeling Physical Behaviors

The state-based behavioral modeling aspect of SA

begins with the identification of the important state

variables in the system. It goes on to describe the

causal effects among the state variables, commands

and measurements (under both nominal and off-

nominal situations) in the form of state effects models,

measurement models, and command models. It is

important to note that these models may be expressed

using any appropriate representation, e.g., differential

equations, tables, state charts, pseudo-code, plain text,

etc. The granularity of the models is at the discretion of

the system engineer, based on the abstractions and

assumptions (s)he defines.

Our models for the AMCP required careful analysis

of how the antenna hardware would operate, how the

received signal would be processed, how the targets

(spacecraft) would be located and tracked, and other

physical behaviors of the NG-DSN’s system under

control. (Our antenna hardware model was actually

based on an existing, prototype array antenna at JPL,

which we used to demonstrate AMCP’s monitor and

control capabilities using real hardware—Section 8.2

discusses the result of this demonstration.) The result

of our modeling work is graphically summarized in the

State Effects Diagram (SED) shown in Figure 1. In this

section, we focus the discussion on the region

contained within the dashed border, that is, only on the

behaviors related to the “mechanical” aspect of the

individual antennas including antenna pointing. In the

SED, circles represent state variables, triangles

represent measurements from the system under control,

and inverted triangles represent commands to the

system under control.

As can be seen in Figure 1, there are four pertinent

state variables in the bounded region: (1) Ant N

Mechanical Health, (2) Ant N Mechanical Power

and OpMode, (3) Ant N Pointing Profile, and (4)

Ant N Pointing. The “Ant N” prefix in the names

indicates that these state variables exist for each

antenna in the system.

The Ant N Mechanical Health state variable

models the health state of the mechanical components

of an antenna. We defined this state variable to have a

binary value of healthy or unhealthy. For the

purposes of this prototyping effort, we have chosen to

represent uncertainty for this and all other discrete

state variables in our system as either known or

unknown, though more refined uncertainty

representations (e.g., probabilistic belief states) could

be used.

Ant N Mechanical Power and OpMode represents

the power state and the operational mode of an

antenna. Therefore, the state variable in fact contains

two separate states. The possible operational modes

were defined as manual override (where the antenna

is not under the control of our automated control

system) shutdown (where the antenna is under our

system’s control but the motor is powered off), idle

(where the antenna is under our system’s control and

the motor is powered on, but is inactive), or tracking

(where the antenna is under our system’s control and

the motor is on, and is actively tracking a target

according to the pointing profile). The power state is

Figure 1. The state effects diagram of the antenna array “system under control”

either powered or unpowered. The state effects model

for this state variable is shown in Figure 2.

We must mention that the two state variables

introduced thus far model discrete states, and they may

be modeled as finite state machines, for example.

However, we now introduce state variables that model

continuous states. SA allows both discrete and

continuous events to be represented in the models. In

fact, SA makes no restrictions on model types, as

mentioned above.

Ant N Pointing Profile represents the time-ordered

set of coordinates that the antenna should track. The

coordinates are specified in azimuth and elevation

degrees and are usually the pointing coordinates for a

target spacecraft (but not always, as in the case where

antennas may be tracking multiple “nearby” spacecraft

simultaneously).

Ant N Pointing represents the actual, real-time

pointing coordinates of the antenna. Its state effects

model is of a continuous nature. For example,

assuming that the antenna is powered, tracking, and

healthy, Ant N Pointing’s coordinates will be:

1. the azimuth and elevation specified by one of

the entries in the pointing profile, if the entry’s

time is the current time;

2. interpolated (or extrapolated) from the pointing

profile if the profile does not have an entry

with time that corresponds to the current time;

or

3. the last pointing coordinates if either: (a)

coordinates from 1 or 2 above are physically

unrealizable or (b) the pointing profile is an

empty list.

Note that this model represents an idealized model of

behavior, in that it does not allow for the antenna

pointing to stray from the pointing profile, e.g., due to

environmental effects or imperfections in the antenna

hardware or low-level software design. A higher-

fidelity model would include such effects.

State variables can affect each other, but they are

also affected by commands. For the four state variables

under discussion, the Ant N Profile command affects

the Ant N Pointing Profile state variable by causing

our system under control to hold a new pointing profile

in memory. Similarly, the Ant N Mechanical Power

and OpMode command affects the state variable of

the same name by causing the antenna mechanical state

to change (see Figure 2).

State variables, in turn, can affect the measurements

provided by sensors in the system under control.

Intuitively, when a state changes in the physical world,

the change may be observed by the control system via

one or more measurements. Three of our state

variables have an effect on measurements: (1) Ant N

Pointing affects the Ant N AzEl and Ant N Error

(the as-measured azimuth and elevation coordinates

and error values) measurements produced by the

antenna system under control, (2) Ant N Mechanical

Power and OpMode affects the Ant N Power and

Ant N Available (indicates that the antenna may be

controlled by our system, i.e., not in manual override

mode) measurements, and (3) both Ant N Mechanical

Power and OpMode and Ant N Mechanical Health

affect the Ant N Mechanical Health measurement

(because the health measurement is unavailable when

the antenna is unpowered).

We used a State Database [5] implemented in a

structured wiki tool to capture the models and

descriptions produced from our system engineering

process. It allowed our models to be expressed using

different representations and supported our highly

collaborative engineering environment.

Behavioral modeling can be a painstaking process,

often requiring several iterations and corrections.

Nevertheless, the time and energy invested in this stage

pays dividends because:

1. The models directly inform the software design,

which can be approached as an incremental

step to the behavioral modeling, rather than a

complete design from scratch;

2. The models shape the goal-based operations

engineering artifacts, as discussed in Section 6;

3. The behavioral models provide the design for

the simulation software.

In the next section, we discuss the first benefit, in

the context of the AMCP.

5. Translation into Software Design

Figure 2. State effects model for the Ant N

Mechanical Power and OpMode state variable.

Using SA, system engineers use the models of the

system under control to specify the control system

software design in a manner that allows for direct

translation into code. Software engineers are not

required to make guesses as to the intent of the system

engineers, thus making implementation more

straightforward and less prone to errors due to

misinterpretation of the system engineering artifacts.

This direct translation is possible because our software

framework adheres to a specific architecture, as shown

in Figure 3. In this section, we describe the AMCP

software in terms of the following structures and

functions: goal network, mission planning and

execution, goal achievement, and simulation.

The goal network (GN) structure is the embodiment

of operator intent. It contains all of the top-level goals

and supporting goals necessary to accomplish the task

asked of the system by the operator. When a goal

comes into the system, it specifies a constraint on the

value of a state variable over its duration, which is

delimited by a starting timepoint and an ending

timepoint. The GN also consists of temporal

constraints, which express min-max constraints

between timepoints (e.g., they are used to constrain the

duration of a goal, or the relative ordering of goals).

Each GN goes through stages of processing during

which it is refined into an executable set of “intent

timelines”. A hierarchy of goals supporting the

operator-specified goals is iteratively produced during

the elaboration stage, and the resulting set of goals are

provided specific, conflict-free relative orderings on

the timelines during the scheduling stage. Then, the

GN is approved for promotion once all the goals have

been scheduled. Finally, the execution of the GN

begins. See [6] for more information on each of these

processes.

The mission planning and execution (MPE)

function is responsible for setting up the GN and

managing it. Along with GN elaboration, scheduling,

promotion, and execution, MPE also verifies that

executing goals are being satisfied, and runs

appropriate failure response procedures if a goal

failure occurs, as described in Section 6.

The software framework uses components known

as achievers to ensure that the system behaves as

intended. Goal achievement is performed by two types

of achievers: controllers and estimators. The

architecture in Figure 3 includes the state-based

“control diamond” pattern, which implements the goal

achievement function in the architecture. For example,

when the GN execution process asserts that the

‘Transition to Tracking’ goal is to be placed on the

Ant N Mechanical Power and OpMode state

variable, the MPE function issues this goal to this state

variable’s controller. Upon execution, the controller

looks at the constraint specified by that goal. The

constraint dictates that the value of the Ant N

Mechanical Power and OpMode state variable

should become tracking. The controller checks the

current estimated state of this state variable. If the

current estimated state is, say, idle, then the controller

issues the ‘Begin_Tracking’ command to the Hardware

Adapter (HWA). The HWA interprets this command

for the system under control and relays the appropriate

directive to the hardware. Ideally the hardware will

react by placing the antenna in tracking mode, as

indicated in the state effects model in Figure 2. In the

meantime, the HWA retrieves the measurements from

the hardware, and forwards them to the estimator. On

the basis of this and any other pertinent evidence, the

estimator then makes a determination on the state of

the hardware. In this case, if the HWA’s measurement

provides confirmation that the antenna is indeed

tracking, then the estimator updates the Ant N

Mechanical Power and OpMode state variable’s

operational mode as tracking.

At this point the system has made a complete cycle

of the control diamond (Figure 3), for the Ant N

Mechanical Power and OpMode state variable. The

other state variables follow a similar pattern, with their

achievers’ logic tailored appropriately per the models

of the system under control.

The actual hardware for the system under control

may not always be available, in which case a

simulation may be used in its place. Further discussion

of our results from operating against hardware

simulation is detailed in Section 8.1.

Design documentation of the achievers and HWAs

were captured using the same State Database described

in Section 4. The software engineers referred to the

same models created by the system engineers. Flexible

representations supported by the wiki minimized the

System
Under
Control

State
Control

Hardware
Adapter

Mission Planning & Execution

Control
Goals

Sense

State
Estimation

Act

Measurements

& Commands

Commands

State

Functions

State

Values

Knowledge
Goals

State
Knowledge

Models

Figure 3. State-based control architecture

ambiguity that usually plagues the translation of high-

level requirements into software.

6. Engineering Goal-Based Operations

As specified in [1], design of goal-based operations

in SA consists of defining: (1) types of goals that can

be issued, (2) goal elaborations that specify supporting

goals for each goal, and (3) system-specific logic

required to correctly plan and execute goals.

Defining goal types is a straightforward endeavor,

as each state variable defined in the SA is associated

with multiple maintenance goals and/or transition

goals. A maintenance goal, as the name suggests, is a

constraint to maintain either the value (control goal) or

our level of certainty in the value (knowledge goal). In

other words, maintenance goals provide a way to

specify what state we want and how trustworthy that

state information needs to be. For simplicity, we

adopted a binary known or unknown constraint for all

knowledge goals (which is consistent with the

uncertainty representations of the state variables, as

mentioned Section 4). Transition goals are necessary

precursors to maintenance goals that provide

constraints in order to “transition” state variables from

their current values to the starting values of the

maintenance goals. In AMCP, when we place a

maintenance goal on an antenna’s pointing profile, in

most instances the antenna will not initially be oriented

in the same direction as the starting point of the

pointing profile. A transition goal is then required to

take the antenna from its current position to the

starting point of the pointing profile.

Goal elaboration is a way to use the state effects

model to decompose a goal into supporting goals (see

Figure 4). For our project, we translate a service

request (consisting of a target, track times, and

minimum number of antennas) into a single goal on the

combined signal state variable. This goal is then

elaborated into supporting goals as predicated by the

effects relationships in the SED. Each supporting goal

is in turn elaborated until there are no more supporting

goals to be specified. Guidelines for how to define

goal elaborations are outlined in [1], including “a

control goal on a given state variable may elaborate

into a supporting knowledge goal on the same state

variable and supporting control goals on its affecting

state variables”, and “a maintenance goal should

elaborate into a transition goal on the same state

variable”.

In cases where there is more than one set of

supporting goals that can be specified for a given goal,

elaboration tactics capture these options, and define

the logic for selecting the appropriate supporting goals

to achieve the original goal, given the current system

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Maintain

GOAL_Target_X_
Signal_Known

GOAL_Target_X_
Location_Maintain

GOAL_Ant_N_
Pointing_Maintain

GOAL_Ant_N_Rcvd
_Signal_Transition

GOAL_Ant_N_Rcvd
_Signal_Known

GOAL_Ant_N_

Electronics_
Package_Maintain

GOAL_Ant_N_
Pointing_Transition

GOAL_Ant_N_

Mechanical_Health_
Maintain

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Maintain

GOAL_Ant_N_

Pointing_Profile_
Maintain

GOAL_Ant_N_

Electronics_
Package_Transition

GOAL_Ant_N_

Electronics_
Package_Known

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Transition

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Known

GOAL_Combined_
Signal_M_Transition

GOAL_Combined_
Signal_M_Known

GOAL_Ant_N_Rcvd
_Signal_Maintain

GOAL_Array_

Correlator_
Combiner_Maintain

GOAL_Combined_
Signal_M_Maintain

GOAL_Activity_
Track

GOAL_Ant_N_

Pointing_Profile_
Transition

GOAL_Ant_N_

Pointing_Profile_
Known

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Transition

GOAL_Ant_N_Mech

anical_Power_And_
OpMode_Known

GOAL_Ant_N_
Pointing_Known

GOAL_Ant_N_

Pointing_Profile_
Maintain

GOAL_Array_

Correlator_
Combiner_Known

GOAL_Array_

Correlator_
Combiner_Transitio

GOAL_Ant_N_

Pointing_Profile_
Known

GOAL_Ant_N_

Mechanical_Health_
Known

GOAL_Ant_N_

Mechanical_Health_
Transition

Figure 4. AMCP Goal Elaboration Hierarchy (note: colors indicate the level within the hierarchy).

state. For example, in the elaboration of our combined

signal goal, antennas are chosen based on availability

and health. This corresponds to creating received

signal goals on the assigned antennas. Such tactics

provide flexibility in achieving goals under different

system conditions and can also be used to recover from

system faults. In our control framework, when a goal

fails, responsibility for handling of the failure is passed

up the elaboration hierarchy until a goal elaborator is

found to have a tactic that helps to resolve the failure

(somewhat akin to exception handling). In our system,

when an antenna fails for any reason, the combined

signal goal is re-elaborated using the following tactic:

replace the signals from any unhealthy antennas with

signals from available and healthy antennas, if

possible.

The complete goal elaboration tree for the AMCP is

shown in Figure 4. These elaborations were specified

using the SED in Figure 1. Central to our elaboration

hierarchy is the multiplicity of goals generated from

the combined signal goal. The combined signal goal

elaborates into multiple goals on received signals,

which corresponds to multiple assigned antennas, as

denoted by the “Ant_N” prefix in a goal’s name.

The third aspect of designing goal-based operations

is the specification of system-specific logic required to

correctly plan and execute goals. For example, systems

engineers need to specify the logic that dictates

whether two goals may be executed concurrently or

sequentially on a given state variable’s timeline. More

detail on how to specify such logic is provided in [1].

7. User Interface for Operations

The user interface (UI) is built upon the Eclipse

Rich Client Platform, Java Message Service (JMS),

and Relational Database Management System

(RDBMS). Leveraging Eclipse and JMS, the UI

supports monitoring from multiple perspectives (e.g.,

state estimates and measurements). In near real-time,

the operators can monitor service requests in both

mission-centric and antenna-centric views. The service

requests and service fulfillment information are

rendered in a Gantt chart that affords the operators a

bird’s-eye view of all progress. A tabular view

contains detailed service fulfillment information and is

linked to the Gantt chart. This provides the operator

the ability to drill down to needed information should

human decision and intervention be required. The UI

also provides operators the ability to correlate the

antenna profile, pointing commands and the actual

pointing measurements into a stereo plot. These graphs

are useful to quickly diagnose antenna-related

problems, especially in an arraying scenario. Finally,

the RDBMS allows the UI to record all data generated

as a response to a service request. All discrete

information items are assigned globally unique IDs and

automatically converted to relational records for

storage. This persistent aspect of the UI allows data

mining for history and trends.

8. Operations Demonstration

In this section, we present results from

demonstrations of the AMCP.

8.1. Simulated Antenna Array

An actual NG-DSN array consisting of hundreds of

antennas does not exist and is only conceptual at this

time. Furthermore, tests on real antenna hardware are

costly due to staffing of antenna personnel and

maintenance costs. So in order to demonstrate our

system’s fully scalable capabilities, we interfaced our

control system to a software-simulated antenna array.

In the AMCP system under control, each antenna

was modeled per the state variables given in Section 4.

A simulator was written for each of these state

variables. The simulators were modeled after the

expected behavior of the actual antenna hardware

components, as captured in the state effects models.

The simulated hardware elements served as the system

under control shown in Figure 3. The simulators were

also capable of off-nominal behavior (e.g., antenna

failure) in order to test our control system’s fault

recovery mechanisms.

Our tests typically involved from five to fifty

simulated antennas. A common test case had the

operator issue a service request to track a spacecraft

using five antennas. Once all five antennas were “on

point”, or actively tracking the spacecraft, a failure

would be injected into one of the antennas. We then

verified that our control system detected the failed

antenna, and brought up a new available antenna to

take its place. Various permutations of this test case

were performed.

One of the main advantages of autonomous control

of the AMCP is the ability to monitor and control

multiple concurrent activities with minimal operator

intervention. For this reason, a suitable test was to

have the operator submit multiple service requests for

multiple target spacecraft. After doing so, the control

system allocated the necessary number of antennas to

each target spacecraft, and proceeded to track each

target. For example, five antennas pointed to one

spacecraft, and six antennas to another, and four

antennas to another, and so on.

Although testing using the simulated antenna array

was essential and very productive, the viability of our

control system was demonstrated even further when

interfaced to actual antennas, as described in the next

section.

8.2. Antenna Array Hardware

During the development of AMCP, a separate team

at JPL was prototyping the viability of the proposed

NG-DSN concept. Their breadboard setup included

two 6-meter dish antennas. We decided to demonstrate

our control system on these actual antennas.

These antennas were already being monitored and

controlled using software that the aforementioned

array prototype team had developed. We analyzed their

software, broke it down into application layers, and

identified appropriate interface points for our AMCP

software.

During these hardware-based demonstrations, our

AMCP software behaved as expected. Upon

submitting a service request through the UI (the same

ones used in the simulated environment), we observed

the actual hardware antenna slewing and tracking

according to the pointing profile of the target. We

simulated antenna faults by killing the UNIX processes

responsible for tunneling the measurements from the

antenna hardware to our control software’s HWA—

thus creating a situation where the antenna(s) in

question stopped providing measurements. Fault-

handling (goal re-elaboration and re-scheduling)

occurred immediately, and the expected robustness of

our control system was verified.

9. Conclusion

We have successfully applied the State Analysis

systems engineering methodology and utilized a state-

based control framework to produce and demonstrate a

robust and scalable monitor and control software

system for the proposed NG-DSN. This approach

yielded several benefits:

• Direct mapping from systems engineering

specifications to software design minimized

errors of translation and omission;

• Goal-directed operations engineering allowed

our system to respond to faults in an intelligent

manner—trying different methods to ultimately

satisfy the user’s intentions; and

• Use of a structured wiki State Database to

capture our models promoted a high level of

collaboration within the team, and

communication of the requirements was

straight-forward.

Future efforts will focus on infusion of this

technology into other service-oriented DSN systems,

not limited to the proposed NG-DSN, as well as other

embedded system applications.

10. Acknowledgments

The work described in this publication was carried

out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the

National Aeronautics and Space Administration.

The authors gratefully acknowledge the invaluable

contributions of past members of the project team:

Ohanes Dadian, Margaret Stringfellow Herring, Mark

Indictor, and Jay Torres. We would also like to thank

Carl Miyatake and Barzia Tehrani for their help with

the prototype array’s antenna hardware interface.

11. References

[1] Ingham, M., Rasmussen, R., Bennett, M., and

Moncada, A., “Engineering Complex Embedded

Systems with State Analysis and the Mission Data

System”, AIAA Journal of Aerospace Computing,

Information and Communication, Vol. 2, No. 12, Dec.

2005, pp. 507-536.

[2] http://deepspace.jpl.nasa.gov/dsn/

[3] Rogstad, D.H., Mileant, A., and Pham, T.T.,

Antenna Arraying Techniques in the Deep Space

Network, John Wiley & Sons, Inc., 2005.

[4] Bagri, D.S., Statman, J.I., and Gatti, M.S.,

“Operations Concept for Array-based Deep Space

Network,” IEEE Aerospace Conference, Big Sky, MT,

March 2005.

[5] Bennett, M., Rasmussen, R., and Ingham, M.,

“State Analysis Requirements Database for

Engineering Complex Embedded Systems”, 15th

Annual International INCOSE Symposium, Rochester,

NY, July 2005.

[6] Dvorak, D.L., Ingham, M.D., Morris, J. R., and

Gersh, J., “Goal-Based Operations: An Overview”,

AIAA Infotech@Aerospace Conference, Rohnert Park,

CA, May 2007.

